

Author: Renaissance Computing Institute (RENCI)

Version: 4.0.2

Date: 2014-06-17

iRODS 4.0.2 - Manual

page 1

Table of Contents
1 Release Notes 5

2 License 5

3 Overview 6

4 Download 6

4.1 Binaries 6

4.2 Open Source 6

5 Installation 6

5.1 iCAT Server 6

5.1.1 Database Setup Example 7

5.2 Resource Server 8

5.3 Default Environment 9

5.4 Run In Place 9

5.4.1 MacOSX 10

6 Quickstart 11

6.1 Changing the administrator account password 11

6.2 Changing the Zone name 11

6.3 Changing the LocalZoneSID and agent_key 12

6.4 Add additional resource(s) 13

6.5 Add additional user(s) 13

7 Upgrading 14

7.1 RPM based systems 14

7.2 DEB based systems 14

7.3 From E-iRODS 3.0.1 14

7.4 From iRODS 3.3.x 14

8 Server Authentication 15

8.1 Within A Zone 15

8.2 Between Two Zones 16

9 Federation with iRODS 3.x 16

9.1 .irodsEnv for Service Account 16

10 Backing Up 17

11 Architecture 17

11.1 Dynamic Policy Enforcement Points 18

11.1.1 Available Plugin Operations 18

11.1.2 Available Values within Dynamic PEPs 19

12 Pluggable Microservices 20

iRODS 4.0.2 - Manual

page 2

13 Composable Resources 20

13.1 Tree Metaphor 20

13.2 Virtualization 21

13.3 Coordinating Resources 22

13.3.1 Compound 22

13.3.2 Deferred 23

13.3.3 Load Balanced 23

13.3.4 Random 23

13.3.5 Replication 23

13.3.6 Round Robin 23

13.3.7 Passthru 23

13.3.8 Expected 24

13.4 Storage Resources 24

13.4.1 Unix File System 24

13.4.2 Structured File Type (tar, zip, gzip, bzip) 24

13.4.3 Amazon S3 (Archive) 24

13.4.4 DDN WOS (Archive) 24

13.4.5 Non-Blocking 24

13.4.6 Mock Archive 24

13.4.7 Direct Access 25

13.4.8 Universal Mass Storage Service 25

13.4.9 Expected 25

13.5 Managing Child Resources 25

13.6 Example Usage 26

13.6.1 Example 1 26

13.7 Rebalancing 26

14 Pluggable Authentication 26

15 Pluggable Network 27

16 Pluggable Database 27

16.1 Installing lib_mysqludf_preg 28

17 Pluggable RPC API 28

18 Users & Permissions 29

19 Rule Engine 29

19.1 File Locking 29

19.2 Delay execution 29

20 Authentication 30

iRODS 4.0.2 - Manual

page 3

20.1 GSI 30

20.1.1 GSI Configuration 30

20.1.2 iRODS Configuration 30

20.2 Kerberos 31

20.2.1 Kerberos Configuration 31

20.2.1.1 Limitations 31

20.2.2 iRODS Configuration 31

20.2.2.1 Limitations 32

20.3 PAM 32

20.3.1 User Setup 32

20.3.2 Server Configuration 33

20.3.3 Server SSL Setup 33

20.3.3.1 Generate a new RSA key 33

20.3.3.2 Acquire a certificate for the server 33

20.3.3.3 Create the certificate chain file 33

20.3.3.4 Generate OpenSSL parameters 34

20.3.3.5 Place files within accessible area 34

20.3.3.6 Set SSL environment variables 34

20.3.3.7 Restart iRODS 34

20.3.4 Client SSL Setup 34

20.3.5 Environment Variables 35

21 Other Notes 36

22 Configuration 36

22.1 Configuration Files 36

22.2 Checksum Configuration 37

22.3 Special Characters 38

23 Troubleshooting 38

23.1 Common Errors 38

23.1.1 iRODS Server is down 38

23.1.2 No such file or directory 38

23.1.3 No rows found in the iRODS Catalog 38

23.1.4 Access Control and Permissions 38

23.1.5 Credentials 39

24 Glossary 39

25 Known Issues 43

26 History of Releases 43

iRODS 4.0.2 - Manual

page 4

1 Release Notes
This is the fourth major release of The integrated Rule-Oriented Data System (iRODS).

iRODS is developed under the auspices of the iRODS Consortium. This release was prepared by the
Renaissance Computing Institute (RENCI) and released under the New BSD (BSD-3) License.

Development of this release has focused on the following features and efforts:

• Security fixes

• Bug fixes

Ongoing efforts include:

• Memory leak analysis via valgrind

• Full python-based testing framework

• Certified against full Jargon test suite

• Continuous integration testing via hudson

• Continuous static analysis via cppcheck

• Optimized builds with "-O3" and "-Werror"

• Code coverage over 57%

• Topology testing

• Continuously built and tested across 3 major linux distributions

• Packaged for 3 major linux distributions

• Support for package upgrade via package manager

2 License
Copyright (c) 2005-2014, Regents of the University of California, the University of North Carolina at
Chapel Hill, and the Data Intensive Cyberinfrastructure Foundation All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the University of California, San Diego (UCSD), the University of North Carolina
at Chapel Hill nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

iRODS 4.0.2 - Manual

page 5

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3 Overview
This manual provides standalone documentation for iRODS (http://irods.org) as packaged by the
Renaissance Computing Institute (RENCI) (http://www.renci.org) under the aegis of the iRODS
Consortium (http://irods-consortium.org).

http://irods.org

Additional documentation is available on the iRODS wiki (http://wiki.irods.org), the iRODS Doxygen site
(http://irods.org/doxygen), and in the two books previously published by the iRODS team:

(2010) iRODS Primer: integrated Rule-Oriented Data System (Synthesis Lectures on Information
Concepts, Retrieval, and Services) http://www.amazon.com/dp/1608453332

(2011) The integrated Rule-Oriented Data System (iRODS 3.0) Micro-service Workbook
http://www.amazon.com/dp/1466469129

4 Download
iRODS is released in both binary package format and with full source code.

4.1 Binaries
RPM and DEB formats are available for both iCAT-enabled servers and resource-only servers. There are
variations available for combinations of platform and operating system.

More combinations will be made available as our testing matrix continues to mature and increase in
scope.

The latest files can be downloaded from http://irods.org/download.

4.2 Open Source
Repositories, issue trackers, and source code are available on GitHub.

http://github.com/irods

http://github.com/irods/irods

5 Installation
iRODS is provided in binary form in a collection of interdependent packages. There are two types of
iRODS server, iCAT and Resource. A resource server connects to an existing data grid (Zone) and can
provide additional Storage Resources. An iCAT server, consisting of an iRODS server plus an iCAT
metadata catalog, provide the central point of coordination for a data grid.

5.1 iCAT Server
The irods-icat package installs a local unix service account and group named 'irods' and the iRODS
binaries.

An additional database plugin is required which installs the dependencies for database connections and a
short setup script that will prompt for database connection information and then configure the iCAT
Server. Database connection information about an existing database is expected to be provided to iRODS
(see Database Setup Example). iRODS does not create or manage a database instance itself, just the
tables within the database.

iRODS 4.0.2 - Manual

page 6

http://irods.org
http://www.renci.org
http://irods-consortium.org
http://irods.org
http://wiki.irods.org
http://irods.org/doxygen
http://www.amazon.com/dp/1608453332
http://www.amazon.com/dp/1466469129
http://irods.org/download
http://github.com/irods
http://github.com/irods/irods

Installation of the iCAT DEB and PostgreSQL plugin DEB:

$ (sudo) dpkg -i irods-icat-4.0.2-64bit.deb irods-database-plugin-postgres-1.2.deb
$ (sudo) apt-get -f install
$ (sudo) su - irods

And then as the irods user:

irods@hostname:~/ $./packaging/setup_database.sh

The ./packaging/setup_database.sh script will ask for the following fourteen pieces of information before
starting the iRODS server:

1. iCAT Port

2. iCAT Zone

3. Parallel Port Range (Begin)

4. Parallel Port Range (End)

5. Vault Directory

6. LocalZoneSID

7. agent_key

8. iRODS Administrator Username

9. iRODS Administrator Password

10. Database Server's Hostname or IP

11. Database Port

12. Database Name

13. Database User

14. Database Password

Note: A default system PostgreSQL installation does not listen on a TCP port, it only listens on a local
socket. If your PostgreSQL server is localhost, use 'localhost' for 10) above.

Note: Installing the MySQL database plugin will also require Installing lib_mysqludf_preg. These functions
are required for the internal iRODS SQL which uses regular expressions.

5.1.1 Database Setup Example

Once the PostgreSQL database plugin has been installed, the following text will be displayed:

===

iRODS Postgres Database Plugin installation was successful.

To configure this plugin, the following prerequisites need to be met:
 - an existing database user (to be used by the iRODS server)
 - an existing database (to be used as the iCAT catalog)
 - permissions for existing user on existing database

Please run the following setup script as the irods user:
 ./packaging/setup_database.sh

iRODS 4.0.2 - Manual

page 7

===

iRODS can use many different database configurations. As an example, a local PostgreSQL database
can be configured on Ubuntu 12.04 with the following steps:

$ (sudo) su - postgres
postgres$ psql
psql> CREATE USER irods WITH PASSWORD 'testpassword';
psql> CREATE DATABASE "ICAT";
psql> GRANT ALL PRIVILEGES ON DATABASE "ICAT" TO irods;

Confirmation of the permissions can be viewed with \l within the psql console:

psql> \l
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------+----------+----------+-------------+-------------+-----------------------
 ICAT | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =Tc/postgres +
 | | | | | postgres=CTc/postgres+
 | | | | | irods=CTc/postgres
...
(N rows)

5.2 Resource Server
The irods-resource package installs a local unix service account and group named 'irods' and the iRODS
binaries.

There are no required additional packages, but the administrator will need to run a short setup script that
will prompt for iRODS connection information and configure the server.

Installation of the Resource RPM:

- Make sure to read ./packaging/RPM_INSTALLATION_HOWTO.txt before trying to install the RPM package.
$ (sudo) rpm -i irods-resource-4.0.2-64bit-centos6.rpm
$ (sudo) su - irods

And then as the irods user:

irods@hostname:~/ $./packaging/setup_resource.sh

The ./packaging/setup_resource.sh script will ask for the following seven pieces of information about the
existing data grid that the iRODS resource server will need in order to stand up and then connect to its
configured iCAT Zone:

1. iCAT Hostname or IP

2. iCAT Port

3. iCAT Zone

4. LocalZoneSID

5. agent_key

6. iRODS Administrator Username

7. iRODS Administrator Password

iRODS 4.0.2 - Manual

page 8

5.3 Default Environment
Once a server is up and running, the default environment can be shown:

irods@hostname:~/ $ ienv
NOTICE: Release Version = rods4.0.2, API Version = d
NOTICE: irodsHost=hostname
NOTICE: irodsPort=1247
NOTICE: irodsDefResource=demoResc
NOTICE: irodsHome=/tempZone/home/rods
NOTICE: irodsCwd=/tempZone/home/rods
NOTICE: irodsUserName=rods
NOTICE: irodsZone=tempZone
NOTICE: irodsClientServerNegotiation=request_server_negotiation
NOTICE: irodsClientServerPolicy=CS_NEG_REFUSE
NOTICE: irodsEncryptionKeySize=32
NOTICE: irodsEncryptionSaltSize=8
NOTICE: irodsEncryptionNumHashRounds=16
NOTICE: irodsEncryptionAlgorithm=AES-256-CBC
NOTICE: irodsDefaultHashScheme=SHA256

5.4 Run In Place
iRODS can be compiled from source and run from the same directory. Although this is not recommended
for production deployment, it may be useful for testing, running multiple iRODS servers on the same
system, running iRODS on systems without a package manager, and users who do not have administrator
rights on their system.

To run iRODS in place, the build script must be called with the appropriate flag:

user@hostname:~/irods/ $./packaging/build.sh --run-in-place icat postgres

After the system is built, the setup_database.sh script needs to be run from its original location:

user@hostname:~/irods/ $./plugins/database/packaging/setup_database.sh

The script will prompt for iRODS configuration information that would already be known to a binary
installation:

===

You are installing iRODS with the --run-in-place option.

The iRODS server cannot be started until it has been configured.

iRODS server's port [1247]:

iRODS server's zone [tempZone]:

iRODS port range (begin) [20000]:

iRODS port range (end) [20199]:

iRODS 4.0.2 - Manual

page 9

iRODS Vault directory [/full/path/to/Vault]:

iRODS server's LocalZoneSID [TEMP_LOCAL_ZONE_SID]:

iRODS server's agent_key [temp_32_byte_key_for_agent__conn]:

iRODS server's administrator username [rods]:

iRODS server's administrator password:

iRODS Port: 1247
iRODS Zone: tempZone
Range (Begin): 20000
Range (End): 20199
Vault Directory: /full/path/to/Vault
LocalZoneSID: TEMP_LOCAL_ZONE_SID
agent_key: temp_32_byte_key_for_agent__conn
Administrator Name: rods
Administrator Password: Not Shown

Please confirm these settings [yes]:

5.4.1 MacOSX

Installation on a MacOSX system requires the use of the --run-in-place build option due to the lack of a
system-level package manager.

Building and running iRODS on MacOSX is currently only supported with a locally compiled PostgreSQL.
Once the build.sh script is complete, the PostgreSQL system needs to be configured and made ready to
be used by iRODS:

=-=-=-=-=-=-=-
on MacOSX, default postgresql has socket connections managed through /var
but its associated helper scripts assume /tmp
export PGHOST=/tmp

=-=-=-=-=-=-=-
switch into the new database directory
cd external/postgresql-9.3.4

=-=-=-=-=-=-=-
initialize the database
./pgsql/bin/initdb -D `pwd`/pgsql/data

=-=-=-=-=-=-=-
turn off standard_conforming_strings (postgresql 9.x)
sed -i s/#standard_conforming_strings = on/standard_conforming_strings = off/ ./pgsql/data/postgresql.conf

=-=-=-=-=-=-=-
start the database, with logging
./pgsql/bin/pg_ctl -D `pwd`/pgsql/data -l logfile start

=-=-=-=-=-=-=-

create database, user, and permissions
./pgsql/bin/createdb ICAT
./pgsql/bin/createuser irods
./pgsql/bin/psql ICAT -c "ALTER ROLE irods WITH PASSWORD 'testpassword'"

iRODS 4.0.2 - Manual

page 10

./pgsql/bin/psql ICAT -c "GRANT ALL PRIVILEGES ON DATABASE \"ICAT\" TO irods"

=-=-=-=-=-=-=-
switch back to top level and run setup_database.sh
cd ../../
./plugins/database/packaging/setup_database.sh

6 Quickstart
Successful installation will complete and result in a running iRODS server. The iCommand ils will list
your new iRODS administrator's empty home directory in the iRODS virtual filesystem:

irods@hostname:~/ $ ils
/tempZone/home/rods:

When moving into production, you should cover the following steps as best practice:

6.1 Changing the administrator account password
The default installation of iRODS comes with a single user account 'rods' that is also an admin account
('rodsadmin') with the password 'rods'. You should change the password before letting anyone else into
the system:

irods@hostname:~/ $ iadmin moduser rods password <newpassword>

To make sure everything succeeded, you will need to re-authenticate and check the new connection:

irods@hostname:~/ $ iinit
Enter your current iRODS password:
irods@hostname:~/ $ ils
/tempZone/home/rods:

If you see an authentication or other error message here, please try again. The password update only
manipulates a single database value, and is independent of other changes to the system.

6.2 Changing the Zone name
The default installation of iRODS comes with a Zone named 'tempZone'. You probably want to change the
Zone name to something more domain-specific:

irods@hostname:~/ $ iadmin modzone tempZone name <newzonename>
If you modify the local zone name, you and other users will need to
change your .irodsEnv files to use it, you may need to update
irods.config and, if rules use the zone name, you'll need to update
core.re. This command will update various tables with the new name
and rename the top-level collection.
Do you really want to modify the local zone name? (enter y or yes to do so):y
OK, performing the local zone rename

Once the Zone has been renamed, you will need to update your .irodsEnv file to match (note the three
places where the updated zone name is located):

iRODS 4.0.2 - Manual

page 11

irods@hostname:~/ $ cat .irods/.irodsEnv
iRODS server host name:
irodsHost '<hostname>'
iRODS server port number:
irodsPort 1247
Default storage resource name:
irodsDefResource 'demoResc'
Home directory in iRODS:
irodsHome '/**<newzonename>**/home/rods'
Current directory in iRODS:
irodsCwd '/**<newzonename>**/home/rods'
Account name:
irodsUserName 'rods'
Zone:
irodsZone '**<newzonename>**'
Enable Advanced Client-Server negotation:
irodsClientServerNegotiation 'request_server_negotiation'
Client-Server connection policy:
irodsClientServerPolicy 'CS_NEG_REFUSE'
Client-Server Encryption Key Size In Bytes:
irodsEncryptionKeySize '32'
Client-Server Encryption Salt Size In Bytes:
irodsEncryptionSaltSize '8'
Client-Server Encryption Number of Hash Rounds:
irodsEncryptionNumHashRounds '16'
Client-Server Encryption Algorithm:
irodsEncryptionAlgorithm 'AES-256-CBC'
Client requested hash scheme:
irodsDefaultHashScheme 'SHA256'
Hash Matching Policy:
#irodsMatchHashPolicy 'strict'

Now, the connection should be reset and you should be able to list your empty iRODS collection again:

irods@hostname:~/ $ iinit
Enter your current iRODS password:
irods@hostname:~/ $ ils
/<newzonename>/home/rods:

6.3 Changing the LocalZoneSID and agent_key
iRODS 4.0+ servers use the Server Identifiers (SIDs) to mutually authenticate. These two variables should
be changed from their default values in /etc/irods/server.config:

default server id for the local zone
LocalZoneSID TEMP_LOCAL_ZONE_SID

default 32 byte key for agent-agent handshake during
advanced client-server negotiation
agent_key temp_32_byte_key_for_agent__conn

The 'LocalZoneSID' can be up to 50 alphanumeric characters long. The 'agent_key' must be exactly 32
alphanumeric bytes long. These values need to be the same on all servers in the same Zone, or they will

iRODS 4.0.2 - Manual

page 12

not be able to authenticate (see Server Authentication for more information).

The following error will be logged if an agent_key is missing:

ERROR: client_server_negotiation_for_server - sent SID is empty

The following error will be logged when the agent_key values to not align and/or are not exactly 32 bytes
long:

ERROR: client-server negotiation SID mismatch

6.4 Add additional resource(s)
The default installation of iRODS comes with a single resource named 'demoResc' which stores its files in
the /var/lib/irods/iRODS/Vault directory. You will want to create additional resources at disk locations of
your choosing as the 'demoResc' may not have sufficient disk space available for your intended usage
scenarios. The following command will create a basic 'unixfilesystem' resource at a designated host at the
designated full path:

irods@hostname:~/ $ iadmin mkresc <newrescname> 'unixfilesystem' <fully.qualified.domain.name>:</full/path/to/new/vault>

Additional information about creating resources can be found with:

irods@hostname:~/ $ iadmin help mkresc
 mkresc Name Type [Host:Path] [ContextString] (make Resource)
Create (register) a new storage or database resource.

Name is the name of the new resource.
Type is the resource type.
Host is the DNS host name.
And Path is the defaultPath for the vault.
ContextString is any contextual information relevant to this resource.
 (semi-colon separated key=value pairs e.g. "a=b;c=d")

A ContextString can be added to a coordinating resource (where there is
no hostname or vault path to be set) by explicitly setting the Host:Path
to an empty string ('').

Creating new resources does not make them default for any existing or new users. You will need to make
sure that default resources are properly set for newly ingested files.

6.5 Add additional user(s)
The default installation of iRODS comes with a single user 'rods' which is a designated 'rodsadmin' type
user account. You will want to create additional user accounts (of type 'rodsuser') and set their passwords
before allowing connections to your new grid:

irods@hostname:~/ $ iadmin mkuser <newusername> rodsuser

irods@hostname:~/ $ iadmin lu
rods#tempZone
<newusername>#tempZone

iRODS 4.0.2 - Manual

page 13

irods@hostname:~/ $ iadmin help mkuser
 mkuser Name[#Zone] Type (make user)
Create a new iRODS user in the ICAT database

Name is the user name to create
Type is the user type (see 'lt user_type' for a list)
Zone is the user's zone (for remote-zone users)

Tip: Use moduser to set a password or other attributes,
use 'aua' to add a user auth name (GSI DN or Kerberos Principal name)

It is best to change your Zone name before adding new users as any existing users would need to be
informed of the new connection information and changes that would need to be made to their local
.irodsEnv files.

7 Upgrading
Upgrading is handled by the host Operating System via the package manager. Depending on your
package manager, your config files will have been preserved with your local changes since the last
installation. Please see Changing the LocalZoneSID and agent_key for information on server-server
authentication.

7.1 RPM based systems

$ (sudo) rpm -U irods-icat-4.0.2-64bit-suse.rpm

7.2 DEB based systems

$ (sudo) dpkg -i irods-icat-4.0.2-64bit.deb

7.3 From E-iRODS 3.0.1
Upgrading from E-iRODS to iRODS 4.0+ is not currently supported with an automatic script. Since the
package names, the default database, the service account, and the home directory were all changed, it
was decided that there were too many moving parts (and too many possible combinations) to successfully
detect and manipulate into a functional 4.0+ installation.

If you are in need of upgrading from a production E-iRODS 3.0.1 installation, please contact the iRODS
team at RENCI for free support.

7.4 From iRODS 3.3.x
Upgrading from iRODS 3.3.x to iRODS 4.0+ is not supported with an automatic script. There is no good
way to automate setting the new configuration options (resource hierarchies, server.config, etc.) based
solely on the state of a 3.3.x system. In addition, with some of the new functionality, a system
administrator may choose to implement some existing policies in a different manner with 4.0+.

For these reasons, the following manual steps should be carefully studied and understood before
beginning the upgrade process.

1. Port any custom development to plugins: Microservices, Resources, Authentication

2. Make a backup of the iCAT database & configuration files: core.re, core.fnm, core.dvm, etc.

3. Declare a Maintenance Window

iRODS 4.0.2 - Manual

page 14

4. Remove resources from resource groups

5. Remove resource groups (confirm: iadmin lrg returns no results)

6. Shutdown 3.3.x server(s)

7. If necessary, start 3.3.x in-place iCAT database (irodsctl dbstart)

8. Install iRODS 4.0+ packages: irods-icat and a database plugin package (e.g.
irods-database-plugin-postgres)

9. Patch database with provided upgrade SQL file (psql ICAT < packaging/upgrade-3.3.xto4.0.0.sql)

10. If necessary, migrate 3.3.x in-place iCAT database to the system database installation. It is
recommended to dump and restore your database into the system installation. This will allow the
original database to be uninstalled completely, once the iRODS upgrade is confirmed.

11. Provide a database user 'irods', database password, and owner permissions for that database user
to the new system-installed iCAT.

12. Confirm all local at-rest data (any local iRODS Vault paths) has read and write permissions for the
new 'irods' unix service account.

13. Manually update any changes to 'core.re' and 'server.config'. Keep in mind immediate replication
rules (acPostProcForPut, etc.) may be superceded by your new resource composition.

14. Run ./packaging/setup_database.sh (recommended) OR Manually update all 4.0+
configuration files given previous 3.3.x configuration (.irodsEnv, .odbc.ini DSN needs to be set to
either 'postgres', 'mysql', or 'oracle'). The automatic ./packaging/setup_database.sh script
will work only with the system-installed database server.

15. Start new 4.0+ iCAT server

16. On all resource servers in the same Zone, install and setup 4.0+. Existing configuration details
should be ported as well ('server.config', 'core.re', Vault permissions).

17. Rebuild Resource Hierarchies from previous Resource Group configurations
(iadmin addchildtoresc) (See Composable Resources)

18. Install Custom Plugins (Microservice & Resources)

19. Conformance Testing

20. Sunset 3.3.x server(s)

21. Close Maintenance Window

8 Server Authentication

8.1 Within A Zone
When a client connects to a resource server and then authenticates, the resource server connects to the
iCAT server to perform the authentication. To make this more secure, you must configure some Server
Identifiers (SIDs) to cause the iRODS system to authenticate the servers themselves. These SIDs should
be unique and arbitrary strings (maximum alphanumeric length of 50), one for your whole zone:

LocalZoneSID SomeChosenIDString

This allows the resource servers to verify the identity of the iCAT server beyond just relying on DNS.

Mutual authentication between servers is always on. Note that this applies to iRODS passwords and PAM,
and some other interactions, but not GSI or Kerberos.

iRODS 4.0.2 - Manual

page 15

For GSI, users can set the irodsServerDn variable to do mutual authentication.

8.2 Between Two Zones
When a user from a remote zone connects to the local zone, the iRODS server will check with the iCAT in
the user's home zone to authenticate the user (confirm their password). Passwords are never sent across
federated zones, they always remain in their home zone.

To make this more secure, the iRODS system uses Server Identifiers (SIDs) to authenticate the servers,
via a similar method as iRODS passwords. These SIDs should be unique and arbitrary strings, one for
each zone.

To configure this, add items to the /etc/irods/server.config file. 'LocalZoneSID' is for servers Within A
Zone, for example:

LocalZoneSID qwerty123

And one or more 'RemoteZoneSID' items for the remote zones, for example:

RemoteZoneSID <ZoneName>-<LocalZoneSID> (e.g. tempZone-qwerty123)

When tempZone users connect, the system will then confirm that tempZone's LocalZoneSID is
'qwerty123'.

Mutual authentication between servers is always on across Federations.

If you want, you can also scramble the SIDs in the /etc/irods/server.config file. Use the 'iadmin spass' to
scramble and enter the key used in the /etc/irods/server.config file:

SIDKey 456

This makes it a little more secure by keeping plain text passwords (although not encrypted) out of text files
on your host.

9 Federation with iRODS 3.x
iRODS 4.0+ has made some additions to the database tables for the resources (r_resc_main) and Data
Objects (r_data_main) for the purposes of tracking resource hierarchy, children, parents, and other
relationships. These changes would have caused a cross-zone query to fail when the target zone is
iRODS 3.x.

In order to support commands such as ils and ilsresc across a 3.x to 4.0+ federation, iRODS 4.0+
will detect the cross zone query and subsequently strip out any requests for columns which do not exist in
the iRODS 3.x table structure in order to allow the query to succeed.

There are currently no known issues with Federation, but this has not yet been comprehensively tested.

9.1 .irodsEnv for Service Account
irodsClientServerNegotiation needs to be commented out (turned off) as 3.x does not support this feature.

The effect of turning this negotiation off is a lack of SSL encryption when talking with a 3.x Zone. All
clients that connect to this 4.0+ Zone will also need to disable the Advanced Negotiation in their own
'.irodsEnv' files.

iRODS 4.0.2 - Manual

page 16

10 Backing Up
Backing up iRODS involves: The data, the iRODS system and configuration files, and the iCAT database
itself.

Configuration and maintenance of this type of backup system is out of scope for this document, but is
included here as an indication of best practice.

1. The data itself can be handled by the iRODS system through replication and should not require any
specific backup efforts worth noting here.

2. The iRODS system and configuration files can be copied into iRODS as a set of Data Objects by
using the msiServerBackup microservice. When run on a regular schedule, the msiServerBackup
microservice will gather and store all the necessary configuration information to help you reconstruct
your iRODS setup during disaster recovery.

3. The iCAT database itself can be backed up in a variety of ways. A PostgreSQL database is
contained on the local filesystem as a data/ directory and can be copied like any other set of files.
This is the most basic means to have backup copies. However, this will have stale information almost
immediately. To cut into this problem of staleness, PostgreSQL 8.4+ includes a feature called
"Record-based Log Shipping". This consists of sending a full transaction log to another copy of
PostgreSQL where it could be "re-played". This would bring the copy up to date with the originating
server. Log shipping would generally be handled with a cronjob. A faster, seamless version of log
shipping called "Streaming Replication" was included in PostgreSQL 9.0+ and can keep two
PostgreSQL servers in sync with sub-second delay.

11 Architecture
iRODS 4.0+ represents a major effort to analyze, harden, and package iRODS for sustainability,
modularization, security, and testability. This has led to a fairly significant refactorization of much of the
underlying codebase. The following descriptions are included to help explain the architecture of iRODS.

The core is designed to be as immutable as possible and serve as a bus for handling the internal logic of
the business of iRODS (data storage, policy enforcement, etc.). Seven or eight major interfaces will be
exposed by the core and will allow extensibility and separation of functionality into plugins. A few plugins
are included by default in iRODS to provide a set of base functionality.

The planned plugin interfaces and their status are listed here:

Plugin Interface Status Since

Pluggable Microservices Complete 3.0b2

Composable Resources Complete 3.0b3

Pluggable Authentication Complete 3.0.1b1

Pluggable Network Complete 3.0.1b1

Pluggable Database Complete 4.0.0b1

Pluggable RPC API Complete 4.0.0b2

Pluggable First Class Objects Requested

Pluggable Rule Engine Requested

iRODS 4.0.2 - Manual

page 17

http://www.postgresql.org/docs/8.4/static/warm-standby.html#WARM-STANDBY-RECORD
http://www.postgresql.org/docs/9.0/static/warm-standby.html#STREAMING-REPLICATION

11.1 Dynamic Policy Enforcement Points
iRODS 4.0+ has introduced the capability for dynamic policy enforcement points (PEP). For every
operation that is called, two policy enforcement points are constructed (both a pre and post variety), and if
it has been defined in core.re or any other loaded rulebase file they will be executed by the rule engine.

The PEP will be constructed of the form "pep_PLUGINOPERATION_pre" and
"pep_PLUGINOPERATION_post".

For example, for "resource_create", the two PEPs that are dynamically evaluated are
pep_resource_create_pre(*OUT) and pep_resource_create_post(*OUT). If either or both have been
defined in a loaded rulebase file (core.re), they will be executed as appropriate.

The flow of information from the pre PEP to the plugin operation to the post PEP works as follows:

• pep_PLUGINOPERATION_pre(*OUT) - Should produce an *OUT variable that will be passed to the
calling plugin operation

• PLUGINOPERATION - Will receive any *OUT defined by pep_PLUGINOPERATION_pre(*OUT)
above and will pass its own *OUT variable to pep_PLUGINOPERATION_post()

• pep_PLUGINOPERATION_post() - Will receive any *OUT from PLUGINOPERATION. If the
PLUGINOPERATION itself failed, the *OUT variable will be populated with the string
"OPERATION_FAILED".

11.1.1 Available Plugin Operations

The following operations are available for dynamic PEP evaluation. At this time, only very few operations
themselves consider the output (*OUT) of its associated pre PEP.

Plugin Type Plugin Operation

Resource resource_create
resource_open
resource_read
resource_write
resource_stagetocache
resource_synctoarch
resource_registered
resource_unregistered
resource_modified
resource_resolve_hierarchy
resource_rebalance

Authentication auth_client_start
auth_agent_start
auth_establish_context
auth_agent_client_request
auth_agent_auth_request
auth_agent_client_response
auth_agent_auth_response
auth_agent_auth_verify

iRODS 4.0.2 - Manual

page 18

Network network_client_start
network_client_stop
network_agent_start
network_agent_stop
network_read_header
network_read_body
network_write_header
network_write_body

11.1.2 Available Values within Dynamic PEPs

The following Key-Value Pairs are made available within the running context of each dynamic policy
enforcement point (PEP) based both on the plugin type as well as the first class object of interest. They
are available via the rule engine in the form of $KVPairs.VARIABLE_NAME and are originally defined in
iRODS/lib/core/include/rodsKeyWdDef.h.

Plugin Type First Class Object Variable Name

Resource Data Object physical_path
mode_kw
flags_kw
resc_hier

File Object logical_path
file_descriptor
l1_desc_idx
file_size
repl_requested
in_pdmo

Structured Object host_addr
zone_name
port_num
sub_file_path
offset
dataType
oprType

Special Collection spec_coll_class
spec_coll_type
spec_coll_obj_path
spec_coll_resource
spec_coll_resc_hier
spec_coll_phy_path
spec_coll_cache_dir
spec_coll_cache_dirty
spec_coll_repl_num

Authentication Native Password
OS Auth
PAM

zone_name
user_name
digest

iRODS 4.0.2 - Manual

page 19

Network TCP tcp_socket_handle

SSL ssl_host
ssl_shared_secret
ssl_key_size
ssl_salt_size
ssl_num_hash_rounds
ssl_algorithm

For example, within a PEP, you could reference $KVPairs.file_size and get the size of the file currently in
context. Likewise, $KVPairs.ssl_host would provide the current hostname involved in an SSL connection.

Also, $pluginInstanceName is an additional available session variable that gives the instance name of the
plugin from which the call is made.

For example, when running iput -R myOtherResc newfile.txt, a fileCreate() operation is
called on "myOtherResc". This delegates the call to the myOtherResc plugin instance which is a
"resource_create" operation. When the pep_resource_create_pre() rule is evaluated, the value of
$pluginInstanceName will be "myOtherResc". This allows rule authors to make decisions at a
per-resource basis for this type of operation.

12 Pluggable Microservices
iRODS is in the process of being modularized whereby existing iRODS 3.x functionality will be replaced
and provided by small, interoperable plugins. The first plugin functionality to be completed was pluggable
microservices. Pluggable microservices allow users to add new microservices to an existing iRODS server
without recompiling the server or even restarting any running processes. A microservice plugin contains a
single compiled microservice shared object file to be found by the server. Development examples can be
found in the source tree under examples/microservices.

A separate development package, irods-dev, available at http://irods.org/download, contains the
necessary header files to write your own microservice plugins (as well as any other type of iRODS plugin).
Additional information can be found in the Microservice Developers Tutorial.

13 Composable Resources
The second area of modularity to be added to iRODS 4.0+ consists of composable resources.
Composable resources replace the concept of resource groups from iRODS 3.x. There are no resource
groups in iRODS 4.0+.

13.1 Tree Metaphor
In computer science, a tree is a data structure with a hierarchical representation of linked nodes. These
nodes can be named based on where they are in the hierarchy. The node at the top of a tree is the root
node. Parent nodes and child nodes are on opposite ends of a connecting link, or edge. Leaf nodes are at
the bottom of the tree, and any node that is not a leaf node is a branch node. These positional descriptors
are helpful when describing the structure of a tree. Composable resources are best represented using this
tree metaphor.

An iRODS composite resource is a tree with one 'root' node. Nodes that are at the bottom of the tree are
'leaf' nodes. Nodes that are not leaf nodes are 'branch' nodes and have one or more 'child' nodes. A child
node can have one and only one 'parent' node.

The terms root, leaf, branch, child, and parent represent locations and relationships within the structure of
a particular tree. To represent the functionality of a particular resources within a particular tree, the terms
'coordinating' and 'storage' are used in iRODS. Coordinating resources coordinate the flow of data to and
from other resources. Storage resources are typically 'leaf' nodes and handle the direct reading and

iRODS 4.0.2 - Manual

page 20

https://github.com/irods/irods/tree/master/examples/microservices
http://irods.org/download
https://github.com/irods/irods/blob/master/examples/microservices/microservice_tutorial.rst

writing of data through a POSIX-like interface.

Any resource node can be a coordinating resource and/or a storage resource. However, for clarity and
reuse, it is generally best practice to separate the two so that a particular resource node is either a
coordinating resource or a storage resource.

This powerful tree metaphor is best illustrated with an actual example. You can now use ilsresc --tree to
visualize the tree structure of a grid.

13.2 Virtualization
In iRODS, files are stored as Data Objects on disk and have an associated physical path as well as a
virtual path within the iRODS file system. iRODS collections, however, only exist in the iCAT database
and do not have an associated physical path (allowing them to exist across all resources, virtually).

Composable resources, both coordinating and storage, introduce the same dichotomy between the virtual
and physical. A coordinating resource has built-in logic that defines how it determines, or coordinates, the
flow of data to and from its children. Coordinating resources exist solely in the iCAT and exist virtually
across all iRODS servers in a particular Zone. A storage resource has a Vault (physical) path and knows
how to speak to a specific type of storage medium (disk, tape, etc.). The encapsulation of resources into a
plugin architecture allows iRODS to have a consistent interface to all resources, whether they represent
coordination or storage.

This virtualization enables the coordinating resources to manage both the placement and the retrieval of
Data Objects independent from the types of resources that are connected as children resources. When
iRODS tries to retrieve data, each child resource will "vote", indicating whether it can provide the
requested data. Coordinating resources will then decide which particular storage resource (e.g. physical
location) the read should come from. The specific manner of this vote is specific to the logic of the
coordinating resource. A coordinating resource may lean toward a particular vote based on the type of
optimization it deems best. For instance, a coordinating resource could decide between child votes by
opting for the child that will reduce the number of requests made against each storage resource within a
particular time frame or opting for the child that reduces latency in expected data retrieval times. We
expect a wide variety of useful optimizations to be developed by the community.

iRODS 4.0.2 - Manual

page 21

An intended side effect of the tree metaphor and the virtualization of coordinating resources is the
deprecation of the concept of a resource group. Resource groups in iRODS 3.x could not be put into other
resource groups. A specific limiting example is a compound resource that, by definition, was a group and
could not be placed into another group. This significantly limited its functionality as a management tool.
Groups in iRODS now only refer to user groups.

Read more about Composable Resources at http://irods.org/2013/02/e-irods-composable-resources/:

• Paper (279kB, PDF)

• Slides (321kB, PDF)

• Poster (6.4MB, PDF)

13.3 Coordinating Resources
Coordinating resources contain the flow control logic which determines both how its child resources will be
allocated copies of data as well as which copy is returned when a Data Object is requested. There are
several types of coordinating resources: compound, random, replication, round robin, passthru, and some
additional types that are expected in the future. Each is discussed in more detail below.

13.3.1 Compound

The compound resource is a continuation of the legacy compound resource type from iRODS 3.x.

A compound resource has two and only two children. One must be designated as the 'cache' resource
and the other as the 'archive' resource. This designation is made in the "context string" of the
addchildtoresc command.

An Example:

irods@hostname:~/ $ iadmin addchildtoresc parentResc newChildResc1 cache
irods@hostname:~/ $ iadmin addchildtoresc parentResc newChildResc2 archive

Putting files into the compound resource will first create a replica on the cache resource and then create a
second replica on the archive resource.

Getting files from the compound resource will behave in a similar way as iRODS 3.x. By default, the
replica from the cache resource will always be returned. If the cache resource does not have a copy, then
a replica is created on the cache resource before being returned.

This compound resource staging policy can be controlled with the policy key-value pair whose keyword is
"compound_resource_cache_refresh_policy" and whose values are either "when_necessary" (default), or
"always".

From the example near the bottom of the core.re rulebase:

=-=-=-=-=-=-=-
policy controlling when a dataObject is staged to cache from archive in a compound coordinating resource
- the default is to stage when cache is not present ("when_necessary")
=-=-=-=-=-=-=-
pep_resource_resolve_hierarchy_pre(*OUT){*OUT="compound_resource_cache_refresh_policy=when_necessary";} # default
pep_resource_resolve_hierarchy_pre(*OUT){*OUT="compound_resource_cache_refresh_policy=always";}

Replicas within a compound resource can be trimmed. There is no rebalance activity defined for a
compound resource. When the cache fills up, the administrator will need to take action as they see fit.
This may include physically moving files to other resources, commissioning new storage, or marking
certain resources "down" in the iCAT.

The "--purgec" option for iput, iget, and irepl is honored and will always purge the first replica
(usually with replica number 0) for that Data Object (regardless of whether it is held within this compound
resource). This is not an optimal use of the compound resource as the behavior will become somewhat

iRODS 4.0.2 - Manual

page 22

http://irods.org/2013/02/e-irods-composable-resources/
http://irods.org/dev/wp-content/uploads/2013/02/eirods-composable-resources.pdf
http://irods.org/dev/wp-content/uploads/2013/02/eirods-cr-slides.pdf
http://irods.org/dev/wp-content/uploads/2013/02/eirods-composable-resources-poster.pdf

nondeterministic with complex resource compositions.

13.3.2 Deferred

The deferred resource is designed to be as simple as possible. A deferred resource can have one or more
children.

A deferred resource provides no implicit data management policy. It defers to its children with respect to
routing both puts and gets. However they vote, the deferred node decides.

13.3.3 Load Balanced

The load balanced resource provides equivalent functionality as the "doLoad" option for the
msiSetRescSortScheme microservice. This resource plugin will query the r_server_load_digest table from
the iCAT and select the appropriate child resource based on the load values returned from the table.

The r_server_load_digest table is part of the Resource Monitoring System and has been incorporated into
iRODS 4.x. The r_server_load_digest table must be populated with load data for this plugin to function
properly.

The load balanced resource has an effect on writes only (it has no effect on reads).

13.3.4 Random

The random resource provides logic to put a file onto one of its children on a random basis. A random
resource can have one or more children.

If the selected target child resource of a put operation is currently marked "down" in the iCAT, the random
resource will move on to another random child and try again. The random resource will try each of its
children, and if still not succeeding, throw an error.

13.3.5 Replication

The replication resource provides logic to automatically manage replicas to all its children.

Rebalancing of the replication node is made available via the "rebalance" subcommand of iadmin. For
the replication resource, all Data Objects on all children will be replicated to all other children. The amount
of work done in each iteration as the looping mechanism completes is controlled with the session variable
replication_rebalance_limit. The default value is set at 500 Data Objects per loop.

Getting files from the replication resource will show a preference for locality. If the client is connected to
one of the child resource servers, then that replica of the file will be returned, minimizing network traffic.

13.3.6 Round Robin

The round robin resource provides logic to put a file onto one of its children on a rotating basis. A round
robin resource can have one or more children.

If the selected target child resource of a put operation is currently marked "down" in the iCAT, the round
robin resource will move onto the next child and try again. If all the children are down, then the round robin
resource will throw an error.

13.3.7 Passthru

The passthru resource was originally designed as a testing mechanism to exercise the new composable
resource hierarchies.

A passthru resource can have one and only one child.

iRODS 4.0.2 - Manual

page 23

13.3.8 Expected

A few other coordinating resource types have been brainstormed but are not functional at this time:

• Storage Balanced (%-full) (expected)

• Storage Balanced (bytes) (expected)

• Tiered (expected)

13.4 Storage Resources
Storage resources represent storage interfaces and include the file driver information to talk with different
types of storage.

13.4.1 Unix File System

The unix file system storage resource is the default resource type that can communicate with a device
through the standard POSIX interface.

13.4.2 Structured File Type (tar, zip, gzip, bzip)

The structured file type storage resource is used to interface with files that have a known format. By
default these are used "under the covers" and are not expected to be used directly by users (or
administrators).

These are used mainly for mounted collections.

13.4.3 Amazon S3 (Archive)

The Amazon S3 archive storage resource is used to interface with an S3 bucket. It is expected to be used
as the archive child of a compound resource composition. The credentials are stored in a file which is
referenced by the context string. Read more at: https://github.com/irods/irods_resource_plugin_s3

13.4.4 DDN WOS (Archive)

The DataDirect Networks (DDN) WOS archive storage resource is used to interface with a Web Object
Scalar (WOS) Appliance. It is expected to be used as the archive child of a compound resource
composition. It currently references a single WOS endpoint and WOS policy in the context string. Read
more at: https://github.com/irods/irods_resource_plugin_wos

13.4.5 Non-Blocking

The non-blocking storage resource behaves exactly like the standard unix file system storage resource
except that the "read" and "write" operations do not block (they return immediately while the read and
write happen independently).

13.4.6 Mock Archive

The mock archive storage resource was created mainly for testing purposes to emulate the behavior of
object stores (e.g. WOS). It creates a hash of the file path as the physical name of the Data Object.

iRODS 4.0.2 - Manual

page 24

https://github.com/irods/irods_resource_plugin_s3
https://github.com/irods/irods_resource_plugin_wos

13.4.7 Direct Access

The direct access resource was created for scenarios where data resources need to be accessible both
through iRODS and through the local filesystem. A typical usage scenario would be an environment in
which there is a shared high performance filesystem mounted on a compute cluster via NFS, and on
which iRODS has the files from this filesystem registered in order to provide metadata annotation for the
files in this filesystem (i.e. iRODS acts as an "overlay" for the unix file system).

Read more at: https://github.com/irods/irods_resource_plugin_directaccess

13.4.8 Universal Mass Storage Service

The univMSS storage resource delegates stage_to_cache and sync_to_arch operations to an external
script which is located in the iRODS/server/bin/cmd directory. It currently writes to the Vault path of that
resource instance, treating it as a unix file system.

When creating a "univmss" resource, the context string provides the location of the Universal MSS script.

Example:

irods@hostname:~/ $ iadmin mkresc myArchiveResc univmss HOSTNAME:/full/path/to/Vault univMSSInterface.sh

13.4.9 Expected

A few other storage resource types are under development and will be released as additional separate
plugins:

• ERDDAP (expected)

• HDFS (expected)

• HPSS (expected)

• Pydap (expected)

• TDS (expected)

13.5 Managing Child Resources
There are two new iadmin subcommands introduced with this feature.

addchildtoresc:

irods@hostname:~/ $ iadmin h addchildtoresc
 addchildtoresc Parent Child [ContextString] (add child to resource)
Add a child resource to a parent resource. This creates an 'edge'
between two nodes in a resource tree.

Parent is the name of the parent resource.
Child is the name of the child resource.
ContextString is any relevant information that the parent may need in order
 to manage the child.

rmchildfromresc:

irods@hostname:~/ $ iadmin h rmchildfromresc
 rmchildfromresc Parent Child (remove child from resource)
Remove a child resource from a parent resource. This removes an 'edge'

iRODS 4.0.2 - Manual

page 25

https://github.com/irods/irods_resource_plugin_directaccess

between two nodes in a resource tree.

Parent is the name of the parent resource.
Child is the name of the child resource.

13.6 Example Usage
Creating a composite resource consists of creating the individual nodes of the desired tree structure and
then connecting the parent and children nodes.

13.6.1 Example 1

Example 1: Replicates Data Objects to three locations

A replicating coordinating resource with three unix file system storage resources as children would be
composed with seven (7) iadmin commands:

irods@hostname:~/ $ iadmin mkresc example1 replication
irods@hostname:~/ $ iadmin mkresc repl_resc1 "unixfilesystem" renci.example.org:/Vault
irods@hostname:~/ $ iadmin mkresc repl_resc2 "unixfilesystem" maxplanck.example.org:/Vault
irods@hostname:~/ $ iadmin mkresc repl_resc3 "unixfilesystem" sdsc.example.org:/Vault
irods@hostname:~/ $ iadmin addchildtoresc example1 repl_resc1
irods@hostname:~/ $ iadmin addchildtoresc example1 repl_resc2
irods@hostname:~/ $ iadmin addchildtoresc example1 repl_resc3

13.7 Rebalancing
A new subcommand for iadmin allows an administrator to rebalance a coordinating resource. The
coordinating resource can be the root of a tree, or anywhere in the middle of a tree. The rebalance
operation will rebalance for all decendents. For example, the iadmin command
iadmin modresc myReplResc rebalance would fire the rebalance operation for the replication
resource instance named myReplResc. Any Data Objects on myReplResc that did not exist on all its
children would be replicated as expected.

For other coordinating resource types, rebalance can be defined as appropriate. For coordinating
resources with no concept of "balanced", the rebalance operation is a "no op" and performs no work.

14 Pluggable Authentication
The authentication methods are now contained in plugins. By default, similar to iRODS 3.3 and prior,
iRODS comes with native iRODS challenge/response (password) enabled. However, enabling an
additional authentication mechanism is as simple as adding a file to the proper directory. The server does
not need to be restarted.

Available authentication mechanisms include:

iRODS 4.0.2 - Manual

page 26

• Native iRODS password

• OSAuth

• GSI (Grid Security Infrastructure)

• PAM (Pluggable Authentication Module)

• Kerberos

• LDAP (via PAM)

15 Pluggable Network
iRODS now ships with both TCP and SSL network plugins enabled. The SSL mechanism is provided via
OpenSSL and wraps the activity from the TCP plugin.

The SSL parameters are tunable via the following .irodsEnv variables:

Enable Advanced Client-Server negotation:
irodsClientServerNegotiation 'request_server_negotiation'
Client-Server connection policy:
irodsClientServerPolicy 'CS_NEG_REFUSE'
Client-Server Encryption Key Size In Bytes:
irodsEncryptionKeySize '32'
Client-Server Encryption Salt Size In Bytes:
irodsEncryptionSaltSize '8'
Client-Server Encryption Number of Hash Rounds:
irodsEncryptionNumHashRounds '16'
Client-Server Encryption Algorithm:
irodsEncryptionAlgorithm 'AES-256-CBC'

The only valid value for irodsClientServerNegotiation at this time is 'request_server_negotiation'. Anything
else will not begin the negotiation stage and default to using a TCP connection.

The possible values for irodsClientServerPolicy include:

• CS_NEG_REQUIRE: This side of the connection requires an SSL connection

• CS_NEG_DONT_CARE: This side of the connection will connect either with or without SSL

• CS_NEG_REFUSE: (default) This side of the connection refuses to connect via SSL

In order for a connection to be made, the client and server have to agree on the type of connection they
will share. When both sides choose CS_NEG_DONT_CARE, iRODS shows an affinity for security by
connecting via SSL.

The remaining parameters are standard SSL parameters and made available through the EVP library
included with OpenSSL. You can read more about these remaining parameters at
https://www.openssl.org/docs/crypto/evp.html.

16 Pluggable Database
The iRODS metadata catalog is now installed and managed by separate plugins. The 4.0.2 release has
PostgreSQL, MySQL, and Oracle database plugins available and tested. MySQL is not available on
CentOS 5, as the required set of lib_mysqludf_preg functions are not currently available on that OS.

The particular type of database is encoded in /etc/irods/server.config with the following directive:

iRODS 4.0.2 - Manual

page 27

https://www.openssl.org/docs/crypto/evp.html

configuration of icat database plugin - e.g. postgres, mysql, or oracle
catalog_database_type postgres

This is populated by the setup_database.sh script on configuration.

The iRODS 3.x icatHighLevelRoutines are, in effect, the API calls for the database plugins. No changes
should be needed to any calls to the icatHighLevelRoutines.

To implement a new database plugin, a developer will need to provide the existing 84 SQL calls (in
icatHighLevelRoutines) and an implementation of GenQuery.

16.1 Installing lib_mysqludf_preg
Installing the iRODS MySQL database plugin requires the MySQL server to have the lib_mysqludf_preg
functions installed and available to iRODS.

The steps for installing lib_mysqludf_preg on Ubuntu 14.04 include:

Get Dependencies
sudo apt-get install mysql-server mysql-client libmysqlclient-dev libpcre3-dev

Build and Install
cd lib_mysqludf_preg
./configure
make
sudo make install
sudo make MYSQL="mysql -p" installdb

Then, to confirm they are available:

$ mysql -uUSER -p -e "select name from mysql.func"
Enter password:
+------------------------+
| name |
+------------------------+
| lib_mysqludf_preg_info |
| preg_capture |
| preg_check |
| preg_position |
| preg_replace |
| preg_rlike |
+------------------------+

17 Pluggable RPC API
The iRODS API has traditionally been a hard-coded table of values and names. With the pluggable RPC
API now available, a plugin can provide new API calls.

At runtime, if a reqested API number is not already in the table, it is dynamically loaded from plugins/api
and executed. As it is a dynamic system, there is the potential for collisions between existing API numbers
and any new dynamically loaded API numbers. It is considered best practice to use a dynamic API
number above 10000 to ensure no collisions with the existing static API calls.

API plugins self-describe their IN and OUT packing instructions (examples coming soon). These packing
instructions are loaded into the table at runtime along with the API name, number, and the operation

iRODS 4.0.2 - Manual

page 28

https://github.com/mysqludf/lib_mysqludf_preg
https://github.com/mysqludf/lib_mysqludf_preg

implementation being described.

18 Users & Permissions
Users and permissions in iRODS are inspired by, but slightly different from, traditional UNIX filesystem
permissions. Access to Data Objects and Collections can be modified using the ichmod iCommand.

Additionally, permissions can be managed via user groups in iRODS. A user can belong to more than one
group at a time. The owner of a Data Object has full control of the file and can grant and remove access to
other users and groups. The owner of a Data Object can also give ownership rights to other users, who in
turn can grant or revoke access to users.

Inheritance is a collection-specific setting that determines the permission settings for new Data Objects
and sub-Collections. Data Objects created within Collections with Inheritance set to Disabled do not inherit
the parent Collection's permissions. By default, iRODS has Inheritance set to Disabled. More can be read
from the help provided by ichmod h.

Inheritance is especially useful when working with shared projects such as a public Collection to which all
users should have read access. With Inheritance set to Enabled, any sub-Collections created under the
public Collection will inherit the properties of the public Collection. Therefore, a user with read access to
the public Collection will also have read access to all Data Objects and Collections created in the public
Collection.

19 Rule Engine
The Rule Engine, which keeps track of state and interprets both system-defined rules and user-defined
rules, is a critical component of the iRODS system. Rules are definitions of actions that are to be
performed by the server. These actions are defined in terms of microservices and other actions. The
iRODS built-in Rule Engine interprets the rules and calls the appropriate microservices.

19.1 File Locking
A race condition occurs when two processes simultaneously try to change the same data. The outcome of
a race condition is unpredictable since both threads are "racing" to update the data. To allow iRODS users
to control such events, the iCommands iput, iget, and irepl each have both --wlock and --rlock
options to lock the Data Objects during these operations. An irodsServer thread then purges unused
locked files every 2 hours.

19.2 Delay execution
Rules can be run in two modes - immediate execution or delayed execution. Most of the actions and
microservices executed by the rule engine are executed immediately, however, some actions are better
suited to be placed in a queue and executed later. The actions and microservices which are to be
executed in delay mode can be queued with the delay microservice. Typically, delayed actions and
microservices are resource-heavy, time-intensive processes, better suited to being carried out without
having the user wait for their completion. These delayed processes can also be used for cleanup and
general maintenance of the iRODS system, like the cron in UNIX.

Monitoring the delayed queue is important once your workflows and maintenance scripts depends on the
health of the system. The delayed queue can be managed with the following three iCommands:

1. iqdel - remove a delayed rule (owned by you) from the queue.

2. iqmod - modify certain values in existing delayed rules (owned by you).

3. iqstat - show the queue status of delayed rules.

iRODS 4.0.2 - Manual

page 29

20 Authentication
By default, iRODS uses a secure password system for user authentication. The user passwords are
scrambled and stored in the iCAT database. Additionally, iRODS supports user authentication via PAM
(Pluggable Authentication Modules), which can be configured to support many things, including the LDAP
authentication system. PAM and SSL have been configured 'available' out of the box with iRODS, but
there is still some setup required to configure an installation to communicate with your local external
authentication server of choice.

The iRODS administrator can 'force' a particular auth scheme for a rodsuser by 'blanking' the native
password for the rodsuser. There is currently no way to signal to a particular login attempt that it is using
an incorrect scheme (GitHub Issue #2005).

20.1 GSI
Grid Security Infrastructure (GSI) setup in iRODS 4.0+ has been greatly simplified. The functionality itself
is provided by the GSI auth plugin.

20.1.1 GSI Configuration

Configuration of GSI is out of scope for this document, but consists of the following three main steps:

1. Install GSI (most easily done via package manager)

2. Confirm the irods service account has a certificate in good standing (signed)

3. Confirm the local system account for client "newuser" account has a certificate in good standing
(signed)

20.1.2 iRODS Configuration

Configuring iRODS to communicate via GSI requires a few simple steps.

First, if GSI is being configured for a new user, it must be created:

iadmin mkuser newuser rodsuser

Then that user must be configured so its Distiguished Name (DN) matches its certificate:

iadmin aua newuser '/DC=org/DC=example/O=Example/OU=People/CN=New User/CN=UID:drexample'

NOTE: The comma characters (,) in the Distiguished Name (DN) must be replaced with forward slash
characters (/).

On the client side, the user's 'irodsAuthScheme' must be set to 'GSI'. This can be done via environment
variable:

irods@hostname:~/ $ irodsAuthScheme=GSI
irods@hostname:~/ $ export irodsAuthScheme

Or, preferably, in the user's .irodsEnv file:

irodsAuthScheme 'GSI'

Then, to have a temporary proxy certificate issued and authenticate:

iRODS 4.0.2 - Manual

page 30

https://github.com/irods/irods/issues/2005
https://github.com/irods/irods_auth_plugin_gsi

grid-proxy-init

This will prompt for the user's GSI password. If the user is successfully authenticated, temporary
certificates are issued and setup in the user's environment. The certificates are good, by default, for 24
hours.

In addition, if users want to authenticate the server, they can set 'irodsServerDn' in their user environment.
This will cause the system to do mutual authentication instead of just authenticating the client user to the
server.

20.2 Kerberos
Kerberos setup in iRODS 4.0+ has been greatly simplified. The functionality itself is provided by the
Kerberos auth plugin.

20.2.1 Kerberos Configuration

Configuration of Kerberos is out of scope for this document, but consists of the following four main steps:

1. Set up Kerberos (Key Distribution Center (KDC) and Kerberos Admin Server)

2. Confirm the irods service account has a service principal in KDC (with the hostname of the
rodsServer) (e.g. irodsserver/serverhost.example.org@EXAMPLE.ORG)

3. Confirm the local system account for client "newuser" account has principal in KDC (e.g.
newuser@EXAMPLE.ORG)

4. Create an appropriate keytab entry (adding to an existing file or creating a new one)

A new keytab file can be created with the following command:

kadmin ktadd -k /var/lib/irods/irods.keytab irodsserver/serverhost.example.org@EXAMPLE.ORG

20.2.1.1 Limitations

The iRODS administrator will see two limitations when using GSI authentication:

1. The 'clientUserName' environment variable will fail (the admin cannot alias as another user)

2. The iadmin moduser password will fail (cannot update the user's password)

The workaround is to use iRODS native password authentication when using these.

ipasswd for rodsusers will also fail, but it is not an issue as it would be trying to update their (unused)
iRODS native password. They should not be updating their GSI passwords via iCommands.

20.2.2 iRODS Configuration

Configuring iRODS to communicate via Kerberos requires a few simple steps.

First, if Kerberos is being configured for a new user, it must be created:

iadmin mkuser newuser rodsuser

Then that user must be configured so its principal matches the KDC:

iadmin aua newuser newuser@EXAMPLE.ORG

The /etc/irods/server.config must be updated to include:

iRODS 4.0.2 - Manual

page 31

https://github.com/irods/irods_auth_plugin_kerberos
mailto:irodsserver/serverhost.example.org@EXAMPLE.ORG
mailto:newuser@EXAMPLE.ORG

KerberosServicePrincipal=irodsserver/serverhost.example.org@EXAMPLE.ORG
KerberosKeytab=/var/lib/irods/irods.keytab

On the client side, the user's 'irodsAuthScheme' must be set to 'KRB'. This can be done via environment
variable:

irods@hostname:~/ $ irodsAuthScheme=KRB
irods@hostname:~/ $ export irodsAuthScheme

Or, preferably, in the user's .irodsEnv file:

irodsAuthScheme 'KRB'

Then, to initialize the Kerberos session ticket and authenticate:

kinit

20.2.2.1 Limitations

The iRODS administrator will see two limitations when using Kerberos authentication:

1. The 'clientUserName' environment variable will fail (the admin cannot alias as another user)

2. The iadmin moduser password will fail (cannot update the user's password)

The workaround is to use iRODS native password authentication when using these.

ipasswd for rodsusers will also fail, but it is not an issue as it would be trying to update their (unused)
iRODS native password. They should not be updating their Kerberos passwords via iCommands.

20.3 PAM

20.3.1 User Setup

PAM can be configured to to support various authentication systems; however the iRODS administrator
still needs to add the users to the iRODS database:

irods@hostname:~/ $ iadmin mkuser newuser rodsuser

If the user's credentials will be exclusively authenticated with PAM, a password need not be assigned.

For PAM Authentication, the iRODS user selects the new iRODS PAM authentication choice (instead of
password, or Kerberos) via their .irodsEnv file or by setting their environment variable:

irods@hostname:~/ $ irodsAuthScheme=PAM
irods@hostname:~/ $ export irodsAuthScheme

Then, the user runs 'iinit' and enters their system password. To protect the system password, SSL (via
OpenSSL) is used to encrypt the 'iinit' session.

In order to use the iRODS PAM support, you also need to have SSL working between the iRODS client
and server. The SSL communication between client and iRODS server needs some basic setup in order
to function properly. Much of the setup concerns getting a proper X.509 certificate setup on the server
side, and setting up the trust for the server certificate on the client side. You can use either a self-signed
certificate (best for testing) or a certificate from a trusted CA.

iRODS 4.0.2 - Manual

page 32

20.3.2 Server Configuration

The following keywords are used to set values for PAM server configuration. These were previously
defined as compile-time options. They are now configurable via the /etc/irods/server.config configuration
file. The default values have been preserved.

• pam_password_length

• pam_no_extend

• pam_password_min_time

• pam_password_max_time

Descriptions of these values can be found in iRODS/server/icat/src/icatHighLevelRoutines.c.

20.3.3 Server SSL Setup

Here are the basic steps to configure the server:

20.3.3.1 Generate a new RSA key

Make sure it does not have a passphrase (i.e. do not use the -des, -des3 or -idea options to genrsa):

irods@hostname:~/ $ openssl genrsa -out server.key

20.3.3.2 Acquire a certificate for the server

The certificate can be either from a trusted CA (internal or external), or can be self-signed (common for
development and testing). To request a certificate from a CA, create your certificate signing request, and
then follow the instructions given by the CA. When running the 'openssl req' command, some questions
will be asked about what to put in the certificate. The locality fields do not really matter from the point of
view of verification, but you probably want to try to be accurate. What is important, especially since this is
a certificate for a server host, is to make sure to use the FQDN of the server as the "common name" for
the certificate (should be the same name that clients use as their irodsHost), and do not add an email
address. If you are working with a CA, you can also put host aliases that users might use to access the
host in the 'subjectAltName' X.509 extension field if the CA offers this capability.

To generate a Certificate Signing Request that can be sent to a CA, run the 'openssl req' command using
the previously generated key:

irods@hostname:~/ $ openssl req -new -key server.key -out server.csr

To generate a self-signed certificate, also run 'openssl req', but with slightly different parameters. In the
openssl command, you can put as many days as you wish:

irods@hostname:~/ $ openssl req -new -x509 -key server.key -out server.crt -days 365

20.3.3.3 Create the certificate chain file

If you are using a self-signed certificate, the chain file is just the same as the file with the certificate
(server.crt). If you have received a certificate from a CA, this file contains all the certificates that together
can be used to verify the certificate, from the host certificate through the chain of intermediate CAs to the
ultimate root CA.

An example best illustrates how to create this file. A certificate for a host 'irods.example.org' is requested
from the proper domain registrar. Three files are received from the CA: irods.crt, PositiveSSLCA2.crt and
AddTrustExternalCARoot.crt. The certificates have the following 'subjects' and 'issuers':

iRODS 4.0.2 - Manual

page 33

openssl x509 -noout -subject -issuer -in irods.crt
subject= /OU=Domain Control Validated/OU=PositiveSSL/CN=irods.example.org
issuer= /C=GB/ST=Greater Manchester/L=Salford/O=COMODO CA Limited/CN=PositiveSSL CA 2
openssl x509 -noout -subject -issuer -in PositiveSSLCA2.crt
subject= /C=GB/ST=Greater Manchester/L=Salford/O=COMODO CA Limited/CN=PositiveSSL CA 2
issuer= /C=SE/O=AddTrust AB/OU=AddTrust External TTP Network/CN=AddTrust External CA Root
openssl x509 -noout -subject -issuer -in AddTrustExternalCARoot.crt
subject= /C=SE/O=AddTrust AB/OU=AddTrust External TTP Network/CN=AddTrust External CA Root
issuer= /C=SE/O=AddTrust AB/OU=AddTrust External TTP Network/CN=AddTrust External CA Root

The irods.example.org cert was signed by the PositiveSSL CA 2, and that the PositiveSSL CA 2 cert was
signed by the AddTrust External CA Root, and that the AddTrust External CA Root cert was self-signed,
indicating that it is the root CA (and the end of the chain).

To create the chain file for irods.example.org:

irods@hostname:~/ $ cat irods.crt PositiveSSLCA2.crt AddTrustExternalCARoot.crt > chain.pem

20.3.3.4 Generate OpenSSL parameters

Generate some Diffie-Hellman parameters for OpenSSL:

irods@hostname:~/ $ openssl dhparam -2 -out dhparams.pem 2048

20.3.3.5 Place files within accessible area

Put the dhparams.pem, server.key and chain.pem files somewhere that the iRODS server can access
them (e.g. in iRODS/server/config). Make sure that the irods unix user can read the files (although you
also want to make sure that the key file is only readable by the irods user).

20.3.3.6 Set SSL environment variables

The server needs to read these variables on startup:

irods@hostname:~/ $ irodsSSLCertificateChainFile=/var/lib/irods/iRODS/server/config/chain.pem
irods@hostname:~/ $ export irodsSSLCertificateChainFile
irods@hostname:~/ $ irodsSSLCertificateKeyFile=/var/lib/irods/iRODS/server/config/server.key
irods@hostname:~/ $ export irodsSSLCertificateKeyFile
irods@hostname:~/ $ irodsSSLDHParamsFile=/var/lib/irods/iRODS/server/config/dhparams.pem
irods@hostname:~/ $ export irodsSSLDHParamsFile

20.3.3.7 Restart iRODS

Restart the server:

irods@hostname:~/ $./iRODS/irodsctl restart

20.3.4 Client SSL Setup

The client may or may not require configuration at the SSL level, but there are a few parameters that can
be set via environment variables to customize the client SSL interaction if necessary. In many cases, if the
server's certificate comes from a common CA, your system might already be configured to accept
certificates from that CA, and you will not have to adjust the client configuration at all. For example, on an
Ubuntu12 (Precise) system, the /etc/ssl/certs directory is used as a repository for system trusted
certificates installed via an Ubuntu package. Many of the commercial certificate vendors such as VeriSign
and AddTrust have their certificates already installed.

iRODS 4.0.2 - Manual

page 34

After setting up SSL on the server side, test SSL by using the PAM authentication (which requires an SSL
connection) and running iinit with the log level set to LOG_NOTICE. If you see messages as follows,
you need to set up trust for the server's certificate, or you need to turn off server verification.

Error from non-trusted self-signed certificate:

irods@hostname:~/ $ irodsLogLevel=LOG_NOTICE iinit
NOTICE: environment variable set, irodsLogLevel(input)=LOG_NOTICE, value=5
NOTICE: created irodsHome=/dn/home/irods
NOTICE: created irodsCwd=/dn/home/irods
Enter your current PAM (system) password:
NOTICE: sslVerifyCallback: problem with certificate at depth: 0
NOTICE: sslVerifyCallback: issuer = /C=US/ST=North Carolina/L=Chapel Hill/O=RENCI/CN=irods.example.org
NOTICE: sslVerifyCallback: subject = /C=US/ST=North Carolina/L=Chapel Hill/O=RENCI/CN=irods.example.org
NOTICE: sslVerifyCallback: err 18:self signed certificate
ERROR: sslStart: error in SSL_connect. SSL error: error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed
sslStart failed with error -2103000 SSL_HANDSHAKE_ERROR

Error from untrusted CA that signed the server certificate:

irods@hostname:~/ $ irodsLogLevel=LOG_NOTICE iinit
NOTICE: environment variable set, irodsLogLevel(input)=LOG_NOTICE, value=5
NOTICE: created irodsHome=/dn/home/irods
NOTICE: created irodsCwd=/dn/home/irods
Enter your current PAM (system) password:
NOTICE: sslVerifyCallback: problem with certificate at depth: 1
NOTICE: sslVerifyCallback: issuer = /C=US/ST=North Carolina/O=example.org/CN=irods.example.org Certificate Authority
NOTICE: sslVerifyCallback: subject = /C=US/ST=North Carolina/O=example.org/CN=irods.example.org Certificate Authority
NOTICE: sslVerifyCallback: err 19:self signed certificate in certificate chain
ERROR: sslStart: error in SSL_connect. SSL error: error:14090086:SSL routines:SSL3_GET_SERVER_CERTIFICATE:certificate verify failed
sslStart failed with error -2103000 SSL_HANDSHAKE_ERROR

Server verification can be turned off using the irodsSSLVerifyServer environment variable. If this variable
is set to 'none', then any certificate (or none) is accepted by the client. This means that your connection
will be encrypted, but you cannot be sure to what server (i.e. there is no server authentication). For that
reason, this mode is discouraged.

It is much better to set up trust for the server's certificate, even if it is a self-signed certificate. The easiest
way is to use the irodsSSLCACertificateFile environment variable to contain all the certificates of either
hosts or CAs that you trust. If you configured the server as described above, you could just set the
following in your environment:

irods@hostname:~/ $ irodsSSLCACertificateFile=/var/lib/irods/iRODS/server/config/chain.pem
irods@hostname:~/ $ export irodsSSLCACertificateFile

Or this file could just contain the root CA certificate for a CA-signed server certificate. Another potential
issue is that the server certificate does not contain the proper FQDN (in either the Common Name field or
the subjectAltName field) to match the client's 'irodsHost' variable. If this situation cannot be corrected on
the server side, the client can set:

irods@hostname:~/ $ irodsSSLVerifyServer=cert
irods@hostname:~/ $ export irodsSSLVerifyServer

Then, the client library will only require certificate validation, but will not check that the hostname of the
iRODS server matches the hostname(s) embedded within the certificate.

20.3.5 Environment Variables

All the environment variables used by the SSL support (both server and client side) are listed below:

irodsSSLCertificateChainFile (server)

The file containing the server's certificate chain. The certificates must be in PEM format and must be
sorted starting with the subject's certificate (actual client or server certificate), followed by
intermediate CA certificates if applicable, and ending at the highest level (root) CA.

irodsSSLCertificateKeyFile (server)

iRODS 4.0.2 - Manual

page 35

Private key corresponding to the server's certificate in the certificate chain file.

irodsSSLDHParamsFile (server)

The Diffie-Hellman parameter file location.

irodsSSLVerifyServer (client)

What level of server certificate based authentication to perform. 'none' means not to perform any
authentication at all. 'cert' means to verify the certificate validity (i.e. that it was signed by a trusted
CA). 'hostname' means to validate the certificate and to verify that the irodsHost's FQDN matches
either the common name or one of the subjectAltNames of the certificate. 'hostname' is the default
setting.

irodsSSLCACertificateFile (client)

Location of a file of trusted CA certificates in PEM format. Note that the certificates in this file are
used in conjunction with the system default trusted certificates.

irodsSSLCACertificatePath (client)

Location of a directory containing CA certificates in PEM format. The files each contain one CA
certificate. The files are looked up by the CA subject name hash value, which must be available. If
more than one CA certificate with the same name hash value exist, the extension must be different
(e.g. 9d66eef0.0, 9d66eef0.1, etc.). The search is performed based on the ordering of the extension
number, regardless of other properties of the certificates. Use the 'c_rehash' utility to create the
necessary links.

21 Other Notes
iRODS enforces that the database in use (PostgreSQL) is configured for UTF-8 encoding. This is
enforced at the database level and then the tables inherit this setting.

The iRODS setting 'StrictACL' is configured on by default in iRODS 4.0+. This is different from iRODS 3.x
and behaves more like standard Unix permissions. This setting can be found in the /etc/irods/core.re file
under acAclPolicy{}.

22 Configuration

22.1 Configuration Files
There are a number of configuration files that control how an iRODS server behaves. The following is a
listing of the configuration files in an iRODS installation.

This document is intended to explain how the various configuration files are connected, what their
parameters are, and when to use them.

~/.odbc.ini

This file, in the irods user's home directory, defines the unixODBC connection details needed for the
iCommands to communicate with the iCAT database. This file was created by the installer package
and probably should not be changed by the sysadmin unless they know what they are doing.

/etc/irods/irods.config

This file defines the main settings for the iRODS installation. It is created by the installer package and
comes preconfigured with approved and tested settings. Changing this file will take effect after a
restart of the iRODS server. It is recommended not to change this file.

/etc/irods/server.config

This file defines the behavior of the server Agent that answers individual requests coming into
iRODS. It is recommended not to change this file.

~/.irods/.irodsA

iRODS 4.0.2 - Manual

page 36

This is the scrambled password file that is saved after an iinit is run. If this file does not exist, then
each iCommand will prompt for a password before authenticating with the iRODS server. If this file
does exist, then each iCommand will read this file and use the contents as a cached password token
and skip the password prompt. This file can be deleted manually or can be removed by running
iexit full.

~/.irods/.irodsEnv

This is the main iRODS configuration file defining the iRODS environment. Any changes are effective
immediately since iCommands reload their environment on every execution.

22.2 Checksum Configuration
Checksums in iRODS 4.0+ can be calculated using one of multiple hashing schemes. Since the default
hashing scheme for iRODS 4.0+ is SHA256, some existing earlier checksums may need to be
recalculated and stored in the iCAT.

The following two settings, the default hash scheme and the default hash policy, need to be set on both
the client and the server:

Client (.irodsEnv) Server (server.config)

irodsDefaultHashScheme

• SHA256 (default)

• MD5

default_hash_scheme

• SHA256 (default)

• MD5

irodsMatchHashPolicy

• Compatible (default)

• Strict

match_hash_policy

• Compatible (default)

• Strict

When a request is made, the sender and receiver's hash schemes and the receiver's policy are
considered:

Sender Receiver Result

MD5 MD5 Success with MD5

SHA256 SHA256 Success with SHA256

MD5 SHA256, Compatible Success with MD5

MD5 SHA256, Strict Error, USER_HASH_TYPE_MISMATCH

SHA256 MD5, Compatible Success with SHA256

SHA256 MD5, Strict Error, USER_HASH_TYPE_MISMATCH

If the sender and receiver have consistent hash schemes defined, everything will match.

If the sender and receiver have inconsistent hash schemes defined, and the receiver's policy is set to
'compatible', the sender's hash scheme is used.

If the sender and receiver have inconsistent hash schemes defined, and the receiver's policy is set to
'strict', a USER_HASH_TYPE_MISMATCH error occurs.

iRODS 4.0.2 - Manual

page 37

22.3 Special Characters
The default setting for 'standard_conforming_strings' in PostgreSQL 9.1+ was changed to 'on'.
Non-standard characters in iRODS Object names will require this setting to be changed to 'off'. Without
the correct setting, this may generate a USER_INPUT_PATH_ERROR error.

23 Troubleshooting

23.1 Common Errors
Some of the commonly encountered iRODS errors along with troubleshooting steps are discussed below.

23.1.1 iRODS Server is down

Error Code: USER_SOCK_CONNECT_TIMEDOUT -347000

Common areas to check for this error include:

ienv

• The ienv command displays the iRODS environment in use. This may help debug the obvious error
of trying to connect to the wrong machine or to the wrong Zone name.

Networking issues

• Verify that a firewall is not blocking the connection on the iRODS port in use (default 1247).

• Check for network connectivity problems by pinging the server in question.

iRODS server logs

If the iRODS environment issues and networking issues have been ruled out, the iRODS server/client logs
may provide additional information with regards to the specifics of the error in question.

23.1.2 No such file or directory

Common areas to check for this error include:

1. Permissions - Verify that the iRODS user has 'write' access to the directory in question

2. FUSE error

3. Zero byte files

23.1.3 No rows found in the iRODS Catalog

Error Code: CAT_NO_ROWS_FOUND -808000

This error is occurs when there are no results for the database query that was executed. This usually
happens when either:

1. the query itself is not well-formed (e.g. syntax error), or

2. the well-formed query produced no actual results (i.e. there is no data corresponding to the specified
criteria).

23.1.4 Access Control and Permissions

Error Code: CAT_NO_ACCESS_PERMISSION -818000

iRODS 4.0.2 - Manual

page 38

This error can occur when an iRODS user tries to access an iRODS Data Object or Collection that
belongs to another iRODS user without the owner having granted the appropriate permission (usually
simply read or write).

With the more restrictive "StrictACL" policy being turned "on" by default in iRODS 4.0+, this may occur
more often than expected with iRODS 3.x. Check the permissions carefully and use ils -AL to help
diagnose what permissions are set for the Data Objects and Collections of interest.

Modifying the "StrictACL" setting in the iRODS server's core.re file will apply the policy permanently;
applying the policy via irule will have an impact only during the execution of that particular rule.

23.1.5 Credentials

Error Code: CAT_INVALID_USER -827000

This error can occur when the iRODS user is unknown or invalid in some way (for instance, no password
has been defined for the user, or the user does not exist in that Zone). This error is most common while
debugging configuration issues with Zone Federation.

24 Glossary
This glossary attempts to cover most of the terms you may encounter when first interacting with iRODS.
More information can be found on the iRODS wiki at http://wiki.irods.org.

Action

An external (logical) name given to an iRODS Rule(s) that defines a set of macro-level tasks. These
tasks are performed by a chain of microservices in accordance with external input parameters. This is
analogous to head atom in a Prolog rule or trigger-name in a relational database.

Agent

A type of iRODS server process. Each time a client connects to a server, an agent is created and a
network connection established between it and the client.

API

An Application Programming Interface (API) is a piece of software's set of defined programmatic
interfaces to enable other software to communicate with it. iRODS defines a client API and expects
that clients connect and communicate with iRODS servers in this controlled manner. iRODS has an
API written in C, and another written in Java (Jargon).

Authentication Mechanisms

iRODS can employ various mechanisms to verify user identity and control access to Data Objects
(iRODS files), Collections, etc. These currently include the default iRODS secure password
mechanism (challenge-response), Grid Security Infrastructure (GSI), Kerberos, and Operating
System authentication (OSAuth).

Audit Trail

List of all operations performed upon a Data Object, a Collection, a Resource, a User, or other iRODS
entities. When Auditing is enabled, significant events in the iRODS system (affecting the iCAT) are
recorded. Full activity reports can be compiled to verify important preservation and/or security policies
have been enforced.

Client

A Client in the iRODS client-server architecture gives users an interface to manipulate Data Objects
and other iRODS entities that may be stored on remote iRODS servers. iRODS clients include:
iCommands unix-like command line interface, iDrop (ftp-like client java application), iDropWeb (web
interface), etc.

Collection

iRODS 4.0.2 - Manual

page 39

http://wiki.irods.org

All Data Objects stored in an iRODS system are stored in some Collection, which is a logical name
for that set of Data Objects. A Collection can have sub-collections, and hence provides a hierarchical
structure. An iRODS Collection is like a directory in a Unix file system (or Folder in Windows), but is
not limited to a single device or partition. A Collection is logical so that the Data Objects can span
separate and heterogeneous storage devices (i.e. is infrastructure and administrative domain
independent). Each Data Object in a Collection must have a unique name in that Collection.

Data Grid

A grid computing system (a set of distributed, cooperating computers) that deals with the controlled
sharing and management of large amounts of distributed data.

Data Object

A Data Object is a single "stream-of-bytes" entity that can be uniquely identified and is stored in
iRODS. It is given a Unique Internal Identifier in iRODS (allowing a global name space), and is
associated with (situated in) a Collection.

Driver

A piece of software that interfaces to a particular type of resource as part of the iRODS server/agent
process. The driver provides a common set of functions (open, read, write, close, etc.) which allow
iRODS clients (iCommands and other programs using the client API) to access different devices via
the common iRODS protocol.

Federation

Zone Federation occurs when two or more independent iRODS Zones are registered with one
another. Users from one Zone can authenticate through their home iRODS server and have access
rights on a remote Zone and its Data Objects, Collections, and Metadata.

Jargon

The Java API for iRODS. Read more at https://github.com/DICE-UNC/jargon.

iCAT

The iCAT, or iRODS Metadata Catalog, stores descriptive state metadata about the Data Objects in
iRODS Collections in a DBMS database (e.g. PostgreSQL, MySQL, Oracle). The iCAT can keep
track of both system-level metadata and user-defined metadata. There is one iCAT database per
iRODS Zone.

IES (iCAT-Enabled Server)

A machine that runs both an iRODS server and the iCAT database for a particular Zone.

iCommands

iCommands are Unix utilities that give users a command-line interface to operate on data in the
iRODS system. There are commands related to the logical hierarchical filesystem, metadata, data
object information, administration, rules, and the rule engine. iCommands provide the most
comprehensive set of client-side standard iRODS manipulation functions.

Inheritance

Collections in the iRODS logical name space have an attribute named Inheritance. When Collections
have this attribute set to Enabled, new Data Objects and Collections added to the Collection inherit
the access permissions (ACLs) of the Collection. Data Objects created within Collections with
Inheritance set to Disabled do not inherit the parent Collection's ACL settings. ichmod can be used
to manipulate this attribute on a per-Collection level. ils -A displays ACLs and the inheritance
status of the current working iRODS directory.

Logical Name

The identifier used by iRODS to uniquely name a Data Object, Collection, Resource, or User. These
identifiers enable global namespaces that are capable of spanning distributed storage and multiple
administrative domains for shared Collections or a unified virtual Collection.

Management Policies

iRODS 4.0.2 - Manual

page 40

https://github.com/DICE-UNC/jargon

The specification of the controls on procedures applied to Data Objects in a Collection. Management
policies may define that certain Metadata be required to be stored. Those policies could be
implemented via a set of iRODS Rules that generate and verify the required Metadata. Audit Trails
could be used to generate reports that show that Management Policies have been followed.

Metadata

Metadata is data about data. In iRODS, metadata can include system or user-defined attributes
associated with a Data-Object, Collection, Resource, etc., stored in the iCAT database. The metadata
stored in the iCAT database are in the form of AVUs (attribute-value-unit tuples).

Metadata Harvesting

The process of extraction of existing Metadata from a remote information resource and subsequent
addition to the iRODS iCAT. The harvested Metadata could be related to certain Data Objects,
Collections, or any other iRODS entity.

Microservice

A set of operations performed on a Collection at a remote storage location.

Microservices are small, well-defined procedures/functions that perform a certain server-side task and
are compiled into the iRODS server code. Rules invoke Microservices to implement Management
Policies. Microservices can be chained to implement larger macro-level functionality, called an Action.
By having more than one chain of Microservices for an Action, a system can have multiple ways of
performing the Action. At runtime, using priorities and validation conditions, the system chooses the
"best" microservice chain to be executed.

Migration

The process of moving digital Collections to new hardware and/or software as technology evolves.
Separately, Transformative Migration may be used to mean the process of manipulating a Data
Object into a new format (e.g. gif to png) for preservation purposes.

Physical Resource

A storage system onto which Data Objects may be deposited. iRODS supports a wide range of disk,
tape, and remote storage resources.

Resource

A resource, or storage resource, is a software/hardware system that stores digital data. iRODS clients
can operate on local or remote data stored on different types of resources through a common
interface.

Rules

Rules are a major innovation in iRODS that let users automate data management tasks, essential as
data collections scale to petabytes across hundreds of millions of files. Rules allow users to automate
enforcement of complex Management Policies (workflows), controlling the server-side execution (via
Microservices) of all data access and manipulation operations, with the capability of verifying these
operations.

Rule Engine

The Rule Engine interprets Rules following the iRODS rule syntax. The Rule Engine, which runs on
all iRODS servers, is invoked by server-side procedure calls and selects, prioritizes, and applies
Rules and their corresponding Microservices. The Rule Engine can apply recovery procedures if a
Microservice or Action fails.

Scalability

Scalability means that a computer system performs well, even when scaled up to very large sizes. In
iRODS, this refers to its ability to manage Collections ranging from the data on a single disk to
petabytes (millions of gigabytes) of data in hundreds of millions of files distributed across multiple
locations and administrative domains.

Server

iRODS 4.0.2 - Manual

page 41

An iRODS server is software that interacts with the access protocol of a specific storage system. It
enables storing and sharing data distributed geographically and across administrative domains.

Transformative Migration

The process of manipulating a Data Object from one encoding format to another. Usually the target
format will be newer and more compatible with other systems. Sometimes this process is "lossy" and
does not capture all of the information in the original format.

Trust Virtualization

The management of Authentication and authorization independently of the storage location.

Unique Internal Identifier

See Logical Name.

User Name

Unique identifier for each person or entity using iRODS; sometimes combined with the name of the
home iRODS Zone (as username#Zonename) to provide a globally unique name when using Zone
Federation.

Vault

An iRODS Vault is a data repository system that iRODS can maintain on any storage system which
can be accessed by an iRODS server. For example, there can be an iRODS Vault on a Unix file
system, an HPSS (High Performance Storage System), or an IBM DB2 database. A Data Object in an
iRODS Vault is stored as an iRODS-written object, with access controlled through the iCAT catalog.
This is distinct from legacy data objects that can be accessed by iRODS but are still owned by
previous owners of the data. For file systems such as Unix and HPSS, a separate directory is used;
for databases such as Oracle or DB2 a system-defined table with LOB-space (Large Object space) is
used.

Zone

An iRODS Zone is an independent iRODS system consisting of an iCAT-Enabled Server (IES),
optional additional distributed iRODS Resource Servers (which can reach hundreds, worldwide), and
clients. Each Zone has a unique name. When two iRODS Zones are configured to interoperate with
each other securely, it is called (Zone) Federation.

iRODS 4.0.2 - Manual

page 42

25 Known Issues
Using 3.x iCommands with a 4.0+ iRODS Server
--

3.x iCommands retain basic functionality when speaking with a 4.0+ iRODS Server.

However, operations much more complicated than simple puts and gets are likely
to hit cases where the 3.x iCommands do not have sufficient information to
continue or they do not recognize the results returned by the Server.

This is largely due to the SSL handshaking and resource hierarchies in 4.0+.

It is recommended to use the supported iCommands from 4.0+.

Ticket Item: [#1260] unixODBC on OpenSuSE 12.x fails when iRODS resource name contains a hyphen (aka "hpss-sdsc")
--

unixODBC on OpenSuSE 12.x fails when iRODS resource name contains a hyphen (aka "hpss-sdsc").

Also, 'moon landing' in rules3.0/rulewriteKeyValPairs.r.

Other Operating Systems and versions do not exhibit this behavior.

Mar 6 09:47:34 pid:21588 NOTICE: rsAuthCheck user rods#tempZone
Mar 6 09:47:34 pid:21588 NOTICE: rsAuthResponse set proxy authFlag to 5, client authFlag to 5, user:rods#tempZone
proxy:rods client:rods
Mar 6 09:47:34 pid:21588 NOTICE: bindVar[1]=RajaBase
Mar 6 09:47:34 pid:21588 NOTICE: bindVar[2]=acRegisterData
Mar 6 09:47:34 pid:21588 NOTICE: bindVar[3]=acRegisterData()
Mar 6 09:47:34 pid:21588 NOTICE: bindVar[4]=($objPath like "/home/raja#sdsc/myImportantFiles*" && $dataSize > 10000000)
Mar 6 09:47:34 pid:21588 NOTICE: bindVar[5]={
 msiRegisterData():::recover_msiRegisterData();
 msiQueue("msiReplicateData(\'hpss-sdsc\') ::: recover_msiReplicateData;");
}
Mar 6 09:47:34 pid:21588 NOTICE: bindVar[6]=@REL
Mar 6 09:47:34 pid:21588 NOTICE: cllExecSqlWithResult: SQLExecDirect error: -1, sql:select rule_id from R_RULE_MAIN
where rule_base_name = ? and rule_name = ? and rule_event = ? and rule_condition = ? and rule_body = ? and
rule_recovery = ?
Mar 6 09:47:34 pid:21588 NOTICE: SQLSTATE: 01000
Mar 6 09:47:34 pid:21588 NOTICE: SQLCODE: 4294967295
Mar 6 09:47:34 pid:21588 NOTICE: SQL Error message: [unixODBC]Error while executing the query (non-fatal);
ERROR: syntax error at or near "hpss" at character 344
Mar 6 09:47:34 pid:21588 NOTICE: chlInsRuleTable cmlGetIntegerValueFromSqlV3 find rule if any failure -806000
Mar 6 09:47:34 pid:21588 NOTICE: rsGeneralRowInsert: rcGeneralRowInsert failed
Mar 6 09:47:34 pid:21588 ERROR: executeRuleAction Failed for msiAdmInsertRulesFromStructIntoDB status = -806000
CAT_SQL_ERR

26 History of Releases

Date Version Description

2014-06-17 4.0.2 Second Point Release

Random and RoundRobin resource plugin fix, memory leak fixes,
microservice fixes, security fixes, large collection recursive operations,
and better server-server authentication setup.

2014-06-05 4.0.1 First Point Release

Memory leak fixes, security fixes, --run-in-place, MacOSX support,
schema update mechanism.

2014-03-28 4.0.0 Merged Codebase

This is the fourth major release of iRODS and the first merged open
source release from RENCI.

iRODS 4.0.2 - Manual

page 43

2014-03-25 4.0.0rc2 Second Release Candidate of Merged Codebase

This is the second release candidate of the merged open source
release from RENCI. It includes support for MySQL and Oracle
databases, GSI, Kerberos, NetCDF, and direct access resources.

2014-03-08 4.0.0rc1 First Release Candidate of Merged Codebase

This is the first release candidate of the merged open source release
from RENCI. It includes support for MySQL and Oracle databases,
NetCDF, and direct access resources.

2014-02-18 4.0.0b2 Second Beta Release of Merged Codebase

This is the second beta of the merged open source release from
RENCI. It includes pluggable API support and external S3 and WOS
resource plugin packages.

2014-01-17 4.0.0b1 First Beta Release of Merged Codebase

This is the first beta of the merged open source release from RENCI. It
includes pluggable database support and separate packages for the
standalone server and its plugins.

2013-11-16 3.0.1 Second Release

This is the second open source release from RENCI. It includes
Federation compliance with Community iRODS and signaling for
dynamic post-PEPs to know whether their operation failed.

2013-11-14 3.0.1rc1 First Release Candidate of Second Release

This is the first release candidate of the second open source release
from RENCI. It includes a new "--tree" view for ilsresc and a more
powerful irodsctl stop. In addition, package managers should now be
able to handle upgrades more gracefully.

2013-11-12 3.0.1b2 Second Beta of Second Release

This is the second beta of the second open source release from
RENCI. It includes certification work with the Jargon library, more CI
testing, and minor fixes.

2013-10-31 3.0.1b1 First Beta of Second Release

This is the first beta of the second open source release from RENCI. It
includes pluggable network and authentication support as well as a
rebalance option and migration support for the composable resources.

2013-06-05 3.0 First Release

This is the first open source release from RENCI. It includes all the
features mentioned below and has been both manually and
continuously tested.

2013-05-14 3.0rc1 First Release Candidate

This is the first release candidate from RENCI. It includes PAM
support, additional resources (compound, universalMSS, replication,
random, and nonblocking), and additional documentation.

2013-03-15 3.0b3 Third Beta Release

This is the third release from RENCI. It includes a new package for
CentOS 6+, support for composable resources, and additional
documentation.

iRODS 4.0.2 - Manual

page 44

2012-06-25 3.0b2 Second Beta Release

This is the second release from RENCI. It includes packages for iCAT,
Resource, iCommands, and development, in both DEB and RPM
formats. Also includes more documentation.

2012-03-01 3.0b1 Initial Beta Release

This is the first release from RENCI, based on the iRODS 3.0
community codebase.

iRODS 4.0.2 - Manual

page 45

	1 Release Notes
	2 License
	3 Overview
	4 Download
	4.1 Binaries
	4.2 Open Source

	5 Installation
	5.1 iCAT Server
	5.1.1 Database Setup Example

	5.2 Resource Server
	5.3 Default Environment
	5.4 Run In Place
	5.4.1 MacOSX

	6 Quickstart
	6.1 Changing the administrator account password
	6.2 Changing the Zone name
	6.3 Changing the LocalZoneSID and agent_key
	6.4 Add additional resource(s)
	6.5 Add additional user(s)

	7 Upgrading
	7.1 RPM based systems
	7.2 DEB based systems
	7.3 From E-iRODS 3.0.1
	7.4 From iRODS 3.3.x

	8 Server Authentication
	8.1 Within A Zone
	8.2 Between Two Zones

	9 Federation with iRODS 3.x
	9.1 .irodsEnv for Service Account

	10 Backing Up
	11 Architecture
	11.1 Dynamic Policy Enforcement Points
	11.1.1 Available Plugin Operations
	11.1.2 Available Values within Dynamic PEPs

	12 Pluggable Microservices
	13 Composable Resources
	13.1 Tree Metaphor
	13.2 Virtualization
	13.3 Coordinating Resources
	13.3.1 Compound
	13.3.2 Deferred
	13.3.3 Load Balanced
	13.3.4 Random
	13.3.5 Replication
	13.3.6 Round Robin
	13.3.7 Passthru
	13.3.8 Expected

	13.4 Storage Resources
	13.4.1 Unix File System
	13.4.2 Structured File Type (tar, zip, gzip, bzip)
	13.4.3 Amazon S3 (Archive)
	13.4.4 DDN WOS (Archive)
	13.4.5 Non-Blocking
	13.4.6 Mock Archive
	13.4.7 Direct Access
	13.4.8 Universal Mass Storage Service
	13.4.9 Expected

	13.5 Managing Child Resources
	13.6 Example Usage
	13.6.1 Example 1

	13.7 Rebalancing

	14 Pluggable Authentication
	15 Pluggable Network
	16 Pluggable Database
	16.1 Installing lib_mysqludf_preg

	17 Pluggable RPC API
	18 Users & Permissions
	19 Rule Engine
	19.1 File Locking
	19.2 Delay execution

	20 Authentication
	20.1 GSI
	20.1.1 GSI Configuration
	20.1.2 iRODS Configuration

	20.2 Kerberos
	20.2.1 Kerberos Configuration
	20.2.1.1 Limitations

	20.2.2 iRODS Configuration
	20.2.2.1 Limitations

	20.3 PAM
	20.3.1 User Setup
	20.3.2 Server Configuration
	20.3.3 Server SSL Setup
	20.3.3.1 Generate a new RSA key
	20.3.3.2 Acquire a certificate for the server
	20.3.3.3 Create the certificate chain file
	20.3.3.4 Generate OpenSSL parameters
	20.3.3.5 Place files within accessible area
	20.3.3.6 Set SSL environment variables
	20.3.3.7 Restart iRODS

	20.3.4 Client SSL Setup
	20.3.5 Environment Variables

	21 Other Notes
	22 Configuration
	22.1 Configuration Files
	22.2 Checksum Configuration
	22.3 Special Characters

	23 Troubleshooting
	23.1 Common Errors
	23.1.1 iRODS Server is down
	23.1.2 No such file or directory
	23.1.3 No rows found in the iRODS Catalog
	23.1.4 Access Control and Permissions
	23.1.5 Credentials

	24 Glossary
	25 Known Issues
	26 History of Releases

